Publications

Articles Published in Journals and Conferences

  • NUNES, A. L.; GALLO, B.; LOPES, B., PORTELLA, F. A.; VITERBO, J.; DRUMMOND, L. M. A.; ANDRADE, L.; de LIMA, M.; ESTRELA, P. J. B.; MALINI, R. Q. “Two-Step Estimation Strategy for Predicting Petroleum Reservoir Simulation Jobs Runtime on an HPC Cluster”. Concurrency and Computation: Practice & Experience, 2025. 37: e70026.
  • de MELO, M. S.; SOUTO, R. P.; DRUMMOND, L. M. A., “Optimized Execution of a Numerical Weather Forecast Model in a Cloud Cluster”. Concurrency and Computation: Practice & Experience, 2025. 37: e8374.
  • NUNES, A. L.; BOERES, C.; DRUMMOND, L. M.; PILLA, L. L, “ Optimal time and energy-aware client selection algorithms for federated learning on heterogeneous resources.” In 2024 IEEE 36th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), 2024,Hilo. 2024 International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), 2024. p.148-158.
  • LIMA, Miguel; TEYLO, Luan.; DRUMMOND, Lúcia, “An Analysis of Performance Variability in AWS Virtual Machines”. In Simpósio em Sistemas Computacionais de Alto Desempenho, 2024, Brasil. Anais do XXV Simpósio em Sistemas Computacionais de Alto Desempenho,(SSCAD). p. 312-323.
  • LIMA, M.; GALLO, B.; ANDRADE, L.; PORTELLA, F.; ESTRELA, P.; MALINI, R.; NUNES, A., VITERBO, J.; DRUMMOND, L, “Modelos de Predição do Tempo de Jobs Aplicados a um Ambiente de Produção de Alto Desempenho”. In Simpósio em Sistemas Computacionais de Alto Desempenho, 2024, Brasil. Anais do XXV Simpósio em Sistemas Computacionais de Alto Desempenho, (SSCAD). (pp. 25-36).
  • NUNES, A. L.; SODRÉ, D. B.; BOERES, C.; VITERBO. J.; DRUMMOND, L. M.; REBELLO, V. E.; TEYLO, L.; PORTELLA, F. A.; ESTRELA. P. J. B.; MALINI, R. Q, “A Framework for Executing Long Simulation Jobs Cheaply in the Cloud”. In: 2024 IEEE International Conference on Cloud Engineering (IC2E) p. 233-244.
  • DRUMMOND, L. M. A.; ANDRADE L.; MUNIZ P. B.; PEREIRA M. M.; SILVA, T. P.; TEYLO, L. “Design and analyses of web scraping on burstable virtual machines”. Concurrency and Computation: Practice & Experience, 2023.
  • MELO, MATEUS S. DE; DRUMMOND, LÚCIA M. A.; SOUTO, ROBERTO P., “Análise de Desempenho de um Sistema de Modelagem Atmosférica em Nuvens Computacionais”. In: Escola Regional de Alto Desempenho do Rio de Janeiro, 2023, Brasil. Anais da VIII Escola Regional de Alto Desempenho do Rio de Janeiro (ERAD-RJ). p. 1.


  • NUNES, A. L.; DRUMMOND, LÚCIA MARIA DE ASSUMPÇÃO; BOERES, CRISTINA, “Reduzindo Custos de Implantação e Execução de Clusters Spark em Nuvens Públicas”. In: Escola Regional de Alto Desempenho do Rio de Janeiro, 2023, Brasil. Anais da VIII Escola Regional de Alto Desempenho do Rio de Janeiro (ERAD-RJ). p. 6.


  • VASCONCELOS, ARTHUR B.; BRUM, RAFAELA; PAES, ALINE; DRUMMOND, LÚCIA MARIA DE ASSUMPÇÃO, “Detecção de Depressão nas Mídias Sociais usando Transformers com Aprendizado Federado”. In: Escola Regional de Alto Desempenho do Rio de Janeiro, 2023, Brasil. Anais da VIII Escola Regional de Alto Desempenho do Rio de Janeiro (ERAD-RJ). p. 11.


  • NUNES, A. L.; MELO, A. C. M. A.; TADONKI, C.; BOERES, C.; OLIVEIRA, D.; DRUMMOND, LÚCIA MARIA DE A., “Optimizing Computational Costs of Spark for SARS-CoV-2 Sequences Comparisons on a Commercial Cloud”. Concurrency and Computation: Practice & Experience, v. 1, p. 1-15, 2023.


  • PEREIRA, MATHEUS MAROTTI; SILVA, THIAGO DO PRADO; DRUMMOND, LÚCIA MARIA DE A., “Web Scraping na Nuvem AWS: Uma Abordagem com Máquinas Virtuais Burstable”. In: Simpósio em Sistemas Computacionais de Alto Desempenho, 2022, Brasil. Anais do XXIII Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD). p. 25.


  • CAMPBELL, RONALD; NUNES, A. L.; BOERES, CRISTINA; DRUMMOND, LÚCIA MARIA DE ASSUMPÇÃO, “MapReduce na AWS: Uma Análise de Custos Computacionais Utilizando os Serviços FaaS e IaaS”. In: Simpósio em Sistemas Computacionais de Alto Desempenho, 2022, Brasil. Anais do XXIII Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD). p. 145.


  • BRUM, RAFAELA; CASTRO, M. C. S.; ARANTES, L.; SENS, P.; DRUMMOND, LÚCIA M. A., “Optimizing Execution Time and Costs of Cross-Silo Federated Learning Applications with Datasets on different Cloud Providers”. In: 2022 IEEE 34th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), 2022, Bordeaux. Proceedings of 2022 IEEE 34th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), 2022. p. 253-362.


  • BRUM, RAFAELA C.; SENS, PIERRE; ARANTES, LUCIANA; CASTRO, MARIA CLICIA; DRUMMOND, LUCIA MARIA DE A., “Towards a Federated Learning Framework on a Multi-Cloud Environment”. In: 2022 International Symposium on Computer Architecture and High Performance Computing Workshops (SBACPADW), 2022, Bordeaux. 2022 International Symposium on Computer Architecture and High Performance Computing Workshops (SBAC-PADW), 2022. p. 39-44.


  • CARVALHO, PABLO; Cristiana Bentes; DRUMMOND, LÚCIA M. A., “Concurrency and Interference Analysis of Kernels on GPUs”. In: XXXIV Concurso de Teses e Dissertações (CTD 2021) do CSBC, 2021, Belem. v. 1. p. 49-54.


  • DRUMMOND, LUCIA MARIA DE A.; BRUM, R.; SENS, P.; ARANTES, L.; CASTRO, M. C. S.; TEODORO, G., “Evaluating Federated Learning Scenarios in a Tumor Classification Application”. In: Escola Regional de Alto Desempenho RJ, 2021, Petrópolis.


  • TEYLO, L.; ARANTES, L.; SENS, P.; DRUMMOND, L., “Scheduling Bag-of-Tasks in Clouds using Spot and Burstable Virtual Machines”. IEEE Transactions on Cloud Computing, 2021.


  • NUNES, A. L.; MELO, A.; BOERES, C.; OLIVEIRA D.; DRUMMOND, L., “Towards Analyzing Computational Costs of Spark for SARS-CoV-2 Sequences Comparisons on a Commercial Cloud”. WSCAD, 2021.


  • BRUM, R.; DRUMMOND, L.; CASTRO M. C.;  TEODORO G., “Towards Optimizing Computational Costs of Federated Learning in Clouds”. WCC, 2021.


  • BRUM, R.; SOUSA, W.; MELO, A.; BENTES, C.; CASTRO, M. C.; DRUMMOND, L., “A Fault Tolerant and Deadline Constrained Sequence Alignment Application on Cloud-based Spot GPU”. EuroPar, 2021.


  • TEYLO, L.; MELO, A.; BOERES, C.; DRUMMOND, L.; NUNES, A. L.; MARTINS, N., “Comparing SARS-CoV-2 Sequences using a Commercial Cloud with a Spot Instance Based Dynamic Scheduler”. CCGrid, 2021.


  • BRUM, R.; BERNARDINI F.; ALVES M.; DRUMMOND, L., “Using Machine Learning Techniques to Classify the Interference of HPC applications in Virtual Machines with Uncertain Data”. WSCAD, 2020.


  • TEYLO, L.; ARANTES, L.; SENS, P.; DRUMMOND, L., “A Dynamic Task Scheduler Tolerant to Multiple Hibernations in Cloud Environments”. Cluster Computing, 2020.


  • TEYLO, L.; BRUM, R.; ARANTES, L.; SENS, P.; DRUMMOND, L., “Avaliação dos Serviços de Armazenamento da Amazon Web Services para Gravação e Recuperação de Checkpoints”. WTF, 2020.


  • TEYLO, L.; BRUM, R.; ARANTES, L.; SENS, P.; DRUMMOND, L., “Developing Checkpointing and Recovery  Procedures with the  Storage Services of Amazon Web Services”. In Proceedings of the 49th International Conference on Parallel Processing (ICPP): Workshops. ACM, 2020.


  • CARVALHO P.; DRUMMOND L.;  CLUA E.;  PAES A.; BENTES C.; LOPES B., “Using Machine Learning Techniques to Analyze the Performance of Concurrent Kernel Execution on GPUs”. Future Generation Computer Systems, 2020.


  • BASTOS, I. V.; MORAES, I. M.; NGUYEN, T. M. T.; PUJOLLE, G., “Modelo e Avaliação da Recuperação de Conteúdos Através de Funções de Rede Virtuais na Arquitetura de Computação na Borda em Redes Móveis”, em Simpósio Brasileiro de Redes de Computadores e de Sistemas Distribuídos (SBRC), 2019.


  • TEYLO, L.; DRUMMOND, L.; ARANTES, L.; SENS, P., “Escalonamento de Aplicações em Instâncias Preemptivas Sujeitas a Falhas Temporais”, em XX Workshop de Testes e Tolerância a Falhas (WTF), 2019.


  • TEYLO, L.; ARANTES, L.; SENS, P.; DRUMMOND, L., “A Hibernation Aware Dynamic Scheduler for Cloud Environments”. In Proceedings of the 48th International Conference on Parallel Processing (ICPP): Workshops (p. 24). ACM, 2019.


  • TEYLO, L.; ARANTES, L.; SENS, P.; DRUMMOND, L., “A Bag-of-Tasks Scheduler Tolerant to Temporal Failures in Clouds”. In The International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), 2019.


  • HEIDSIECK, G.; OLIVEIRA, D.; PACITTI, E.; PRADAL, C.; TARDIEU, F.; VALDURIEZ, P., “Adaptive Caching for Data-Intensive Scientific Workflows in the Cloud”. In: 30th International Conference on Database and Expert Systems Applications, 2019, Linz, Austria. Proceedings of the 30th International Conference on Database and Expert Systems Applications, 2019.


  • HEIDSIECK, G.; OLIVEIRA, D.; PACITTI, E.; PRADAL, C.; TARDIEU, F.; VALDURIEZ, P., “Efficient Execution of Scientific Workflows in the Cloud through Adaptive Caching”. In: 35ème Conférence sur la Gestion de Données Principes, Technologies et Applications, 2019, Lyon, França. 35ème Conférence sur la Gestion de Données Principes, Technologies et Applications, 2019.


  • CRUZ, R. A.; BENTES, C.; BREDER, B.; VASCONCELLOS, E.; CLUA, E.; DE CARVALHO, P. M.; DRUMMOND, L. M., “Maximizing the GPU resource usage by reordering concurrent kernels submission”. Concurrency and Computation: Practice and Experience, 2018.


  • CARVALHO, P.; CRUZ, R.; DRUMMOND, L. M.; BENTES, C.; CLUA, E.; CATALDO, E.; MARZULO, L.A., “Kernel concurrency opportunities based on GPU benchmarks characterization”. Cluster Computing, pp. 1-12, 2019.


  • GUEDES, T.; JESUS A. L.; OCAÑA, K. A.; DRUMMOND L. M.; OLIVEIRA, D., “Provenance-based fault tolerance technique recommendation for cloud-based scientific workflows: a practical approach”. Cluster Computing, 2019.


  • TEOBALDO BULHÕES; RUSLAN SADYKOV; EDUARDO UCHOA, “A branch-and-price algorithm for the Minimum Latency Problem”. Computers & OR 93: 66-78, 2018.


  • ARTUR ALVES PESSOA; RUSLAN SADYKOV; EDUARDO UCHOA, “Enhanced Branch-Cut-and-Price algorithm for heterogeneous fleet vehicle routing problems”. European Journal of Operational Research 270(2): 530-543, 2018.


  • ARTUR ALVES PESSOA; RUSLAN SADYKOV; EDUARDO UCHOA; FRANÇOIS VANDERBECK, “Automation and Combination of Linear-Programming Based Stabilization Techniques in Column Generation”. INFORMS Journal on Computing 30(2): 339-360, 2018.


  • SILVA JUNIOR, L. P.; PAES, A.; PACITTI, E.; OLIVEIRA, D., “FReeP: towards parameter recommendation in scientific workflows using preference learning”. In: XXXIII Simpósio Brasileiro de Banco de Dados, 2018, Rio de Janeiro. Anais do XXXIII Simpósio Brasileiro de Banco de Dados. Porto Alegre: Sociedade Brasileira de Computação, 2018.


  • VALDURIEZ, P.; MATTOSO, M.; AKBARINIA, R.; BORGES, H.; CAMATA, J.; COUTINHO, A.; GASPAR, D.; LEMUS, N.; LIU, J.; LUSTOSA, H.; MASSEGLIA, F.; NOGUEIRA, F.; SILVA, V.; SOUZA, R. S.; OCAÑA, K.; OGASAWARA, E.; OLIVEIRA, D.; PACITTI, E.; PORTO, F.; SHASHA, D., “Scientific Data Analysis Using Data-Intensive Scalable Computing: the SciDISC Project”. In: 1st LADaS – Latin American Data Science Workshop, 2018, Rio de Janeiro. Proceedings of the 1st LADaS – Latin American Data Science Workshop (in conjunction with VLDB’18), 2018.


  • FIGUEIREDO, ROSA; FROTA, YURI; LABBÉ, MARTINE., “A branch-and-cut algorithm for the maximum-balanced subgraph of a signed graph”. Discrete Applied Mathematics, v. 1, p. 1-38, 2018.


  • PANTOJA, C.; SOARES, H. D.; VITERBO, J.; SEGHROUCHNI, A., “An Architecture for the Development of Ambient Intelligence Systems Managed by Embedded Agents”. In: International Conference on Software Engineering & Knowledge Engineering, 2018, São Francisco. Proceedings of the International Conference on Software Engineering and Knowledge Engineering, 2018.


  • GUITIERREZ, J. L. V.; BOERES, C.; REBELLO, V. E. F., “Combining VM Preemption Schemes to Improve Vertical Memory Elasticity Scheduling in Clouds”. In: Proceedings of the 11th International Conference on Utility and Cloud Computing, Zurich, ACM, p. 53-62, 2018.


Books

  • BORIN, E.; DRUMMOND, LÚCIA MARIA DE A.; GAUDIOT, J.; MELO, M.; NAVAUX, P., High Performance Computing in Clouds: Moving HPC Applications to a Scalable and Cost-Effective Environment. 1. ed. Springer, 2023. v. 1. 340p.


  • DE OLIVEIRA, D. C. M.; LIU, J.; PACITTI, E., Data-Intensive Workflow Management: For Clouds and Data-Intensive and Scalable Computing Environments. Morgan & Claypool Publishers; 2019.